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Normed Linear Vector Space

In a vector space it is useful to have a meaningful measure of size, distance,
and neighborhood. The existence of a norm allows these concepts to be
well-defined.

A norm ‖ · ‖ on a vector space X is a mapping from X to the the nonnegative real
numbers which obeys the following three properties:

1 ‖ · ‖ is homogeneous, ‖αx‖ = |α|‖x‖ for all α ∈ F and x ∈ X ,

2 ‖ · ‖ is positive-definite, ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 iff x = 0, and

3 ‖ · ‖ satisfies the triangle-inequality, ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x , y ∈ X .

A norm provides a measure of size of a vector x , size(x) = ‖x‖
A norm provides a measure of distance between two vectors, d(x , y) = ‖x − y‖
A norm provides a well-defined ε-ball or ε-neighborhood of a vector x ,

Nε(x) = {y | ‖y − x‖ ≤ ε} = closed ε neighborhood
◦
Nε (x) = {y | ‖y − x‖ < ε} = open ε neighborhood
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Normed Linear Vector Space – Cont.

There are innumerable norms that one can define on a given vector space.

Assuming a canonical representation x = (x [1], · · · , x [n])T ∈ Fn, F = C or R, for
a vector x , the most commonly used norms are

The 1-norm: ‖x‖1 =
n∑

i=1

|x [i ]|,

the 2-norm: ‖x‖2 =

√√√√ n∑
i=1

|x [i ]|2 ,

and the ∞-norm, or sup-norm: ‖x‖∞ = max
i
|x [i ]|

These norms are all special cases of the family of p-norms

‖x‖p =

(
n∑

i=1

|x [i ]|p
) 1

p

In this course we focuss on the weighted 2-norm, ‖x‖ =
√
xHΩx , where the

weighting matrix, aka metric matrix, Ω is hermitian and positive-definite.
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Banach Space

A Banach Space is a complete normed linear vector space.

Completeness is a technical condition which is the requirement that every
so-called Cauchy convergent sequence is a convergent sequence.

This condition is necessary (but not sufficient) for iterative numerical
algorithms to have well-behaved and testable convergence behavior.

As this condition is automatically guaranteed to be satisfied for every
finite-dimensional normed linear vector space, it is not discussed in courses
on Linear Algebra.

Suffice it to say that the finite dimensional spaces normed-vector spaces, or
subspace, considered in this course are perforce Banach Spaces.
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Minimum Error Norm Soln to Linear Inverse Problem

An important theme of this course is that one can learn unknown
parameterized models by minimizing the discrepancy between model behavior
and observed real-world behavior.

If y is the observed behavior of the world, which is assumed (modeled) to
behave as y ≈ ŷ = Ax for known A and unknown parameters x , one can
attempt to learn x by minimizing a model behavior discrepancy measure
D(y , ŷ) wrt x .

In this way we can rationally deal with an inconsistent inverse problem.
Although no solution may exist, we try to find an approximate solution which
is “good enough” by minimizing the discrepancy D(y , ŷ) wrt x .

Perhaps the simplest procedure is to work with a discrepancy measure, D(e),
that depends directly upon the prediction error e , y − ŷ .

A logical choice of a discrepancy measure when e is a member of a normed
vector space with norm ‖ · ‖ is

D(e) = ‖e‖ = ‖y − Ax‖

Below, we will see how this procedure is facilitated when y belongs to a
Hilbert space.
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Inner Product Space and Hilbert Space

Given a vector space X over the field of scalars F = C or R, an inner product is
an F-valued binary operator on X × X ,

〈·, ·〉 : X × X → F ; (x , y) 7→ 〈x , y〉 ∈ F , ∀x , y ∈ X .

The inner product has the following three properties:
1 Linearity in the second argument

2 Real positive-definiteness of 〈x, x〉 for all x ∈ X .

0 ≤ 〈x , x〉 ∈ R for any vector x , and 0 = 〈x , x〉 iff x = 0.

3 Conjugate-symmetry, 〈x , y〉 = 〈y , x〉 for all x , y ∈ X .

Given an inner product, one can construct the associated induced norm,

‖x‖ =
√
〈x , x〉 ,

as the right-hand side of the above can be shown to satisfy all the properties
demanded of a norm. It is this norm that is used in an inner product space.

If the resulting normed vector space is a Banach space, one calls the inner product
space a Hilbert Space. All finite-dimensional inner product spaces are Hilbert
spaces.
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The Weighted Inner Product

On a finite n-dimensional Hilbert space, a general inner product is given by
the weighted inner product,

〈x1, x2〉 = xH1 Ωx2 ,

where the Weighting or Metric Matrix Ω is hermitian and positive-definite.

The corresponding induced norm is the weighted 2-norm mentioned above

‖x‖ =
√
xHΩx

When the metric matrix takes the value Ω = I we call the resulting inner
product and induced norm the standard or Cartesian inner-product and
the standard or Cartesian 2-norm respectively. The Cartesian
inner-product on real vector spaces is what is discussed in most
undergraduate courses one linear algebra.
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Orthogonality Between Vectors

The existence of an inner product enables us to define and exploit the
concepts of orthogonality and angle between vectors and vectors; vectors and
subspaces; and subspaces and subspaces.

Given an arbitrary (not necessarily Cartesian) inner product, we define
orthogonality (with respect to that inner product) of two vectors x and y ,
which we denote as x ⊥ y , by

x ⊥ y iff 〈x , y〉 = 0

If x ⊥ y , then

‖x + y‖2 = 〈x + y , x + y〉 = 〈x , x〉+ 〈x , y〉+ 〈y , x〉+ 〈y , y〉
= 〈x , x〉+ 0 + 0 + 〈y , y〉 = ‖x‖2 + ‖y‖2

yielding the (generalized) Pythagorean Theorem

x ⊥ y =⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2
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C-S Inequality and the Angle Between Two Vectors

An important relationship that exists between an inner product 〈x , y〉 and its
corresponding induced norm ‖x‖ =

√
〈x , x〉 is given by the

Cauchy–Schwarz (C-S) Inequality

| 〈x , y〉 | ≤ ‖x‖ ‖y‖ for all x , y ∈ X

with equality iff and only if y = αx for some scalar α.

One can meaningfully define the angle θ between two vectors in a
Hilbert space by

cos θ ,
|〈x , y〉|
‖x‖‖y‖

since as a consequence of the C-S inequality we must have

0 ≤ cos θ ≤ 1
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Subspace Orthogonality and Orthogonal Complements

Two Hilbert subspaces are said to be orthogonal subspaces, V ⊥ W if and
only if every vector in V is orthogonal to every vector in W.

If V ⊥ W it must be the case that V are disjoint W, V ∩W = {0}.

Given a subspace V of X , one defines the orthogonal complement V⊥ of V
to be the set V⊥ of all vectors in X which are perpendicular to V.

The orthogonal complement (in the finite dimensional case assumed here)
obeys the property V⊥⊥ = V.

The orthogonal complement V⊥ is unique and a subspace in its own right for
which

X = V ⊕ V⊥ .

Thus V and V⊥ are complementary subspaces.

Thus V⊥ is more than a complementary subspace to V,

V⊥ is the orthogonally complementary subspace to V.

Note that it must be the case that

dimX = dimV + dimV⊥ .
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Orthogonal Projectors

In a Hilbert space the projection onto a subspace V along its (unique)
orthogonal complement V⊥ is an orthogonal projection operator, denoted
by

PV , PV|V⊥

Note that for an orthogonal projection operator the complementary subspace
does not have to be explicitly denoted.

Furthermore if the subspace V is understood to be the case, one usually
denotes the orthogonal projection operator simply by

P , PV

Of course, as is the case for all projection operators, an orthogonal projection
operator is idempotent

P2 = P
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Four Fundamental Subspaces of a Linear Operator

Consider a linear operator A : X → Y between two finite-dimensional Hilbert
spaces X and Y.

We must have that

Y = R(A)⊕R(A)⊥ and X = N (A)⊥ ⊕N (A) .

If dim(X ) = n and dim(Y) = m, we must have

dim(R(A)) = r dim(R(A)⊥) = m−r dim(N (A)) = ν dim(N (A)⊥) = n−ν

where r is the rank, and ν the nullity, of A.

The unique subspaces R(A), R(A)⊥, N (A), and N (A)⊥ are called

The Four Fundamental Subspaces of the linear operator A.

Understanding these four subspaces yields great insight into solving ill-posed
linear inverse problems y = Ax .
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Projection Theorem & Orthogonality Principle

Given a vector x in a Hilbert space X , what is the best approximation, v , to x in
a subspace V in the sense that the norm of the error D(e) = e = x − v ,
‖e‖ = ‖x − v‖, is to be minimized over all possible vectors v ∈ V?

We call the resulting optimal vector v the least-squares estimate of x in V,
because in a Hilbert space minimizing the (induced norm) of the error
is equivalent to minimizing the “squared-error” ‖e‖2 = 〈e, e〉.

Let v0 = PV x be the orthogonal projection of x onto V.

Note that
PV⊥x = (I − PV)x = x − PV x = x − v0

must be orthogonal to V.

For any vector v ∈ V we have

‖e‖2 = ‖x− v‖2 = ‖(x− v0) + (v0− v)‖2 = ‖x− v0‖2 +‖v0− v‖2 ≥ ‖x− v0‖2 ,

as an easy consequence of the Pythagorean theorem. (Note that the vector
v − v0 must be in the subspace V.)

Thus the error is minimized when v = v0.
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Projection Theorem & Orthogonality Principle – Cont.

Because v0 is the orthogonal projection of x onto V, the least-squares
optimality of v0 is known as the

Projection Theorem: v0 = PV x

Alternatively, recognizing that the optimal error must be orthogonal to V,
(x − v0) ⊥ V, this result is also equivalently known as the

Orthogonality Principle: 〈x − v0, v〉 = 0 for all v ∈ V.
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Least-Squares Soln to Ill-Posed Linear Inverse Problem

Consider a linear operator A : X → Y between two finite-dim Hilbert spaces
and the associated inverse problem y = Ax for a specified measurement
vector y .

In the prediction-error discrepancy minimization approach to solving inverse
problems discussed above, it is now natural to use the inner product induced
norm as the model discrepancy measure

D2(e) = ‖e‖2 = 〈e, e〉 = ‖y − ŷ‖2 = ‖y − Ax‖2

With R(A) a subspace of the Hilbert space Y, we see that we are looking for
the best approximation ŷ = Ax to y in the subspace R(A),

min
ŷ∈R(A)

‖y − ŷ‖2 = min
x∈X
‖y − Ax‖2

From the Projection Theorem, we know that the solution to this problem is
given by the following geometric condition

Geometric Condition for a Least-Squares Solution: e = y − Ax ⊥ R(A)

which must hold for any x which produces a least-squares solution ŷ .
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Generalized Solns to Ill-Posed Linear Inverse Problems

Taking the linear operator A to be a mapping between Hilbert spaces, we can
obtain a generalized least-squares solution to an ill-posed linear inverse
problem Ax = y by looking for the unique solution to the

Regularized Least-squares Problem: min
x
‖y − Ax‖2 + β‖x‖2

where the indicated norms are the inner product induced norms on the
domain and codomain and β > 0.

The solution to this problem, x̂β, is a function of the regularization
parameter β. The choice of the precise value of the regularization
parameter β is often a nontrivial problem.

The unique limiting solution

x̂ , lim
β→0

x̂β ,

is a minimum norm least-squares solution, aka pseudoinverse solution

The operator A+ which maps y to the solution, x̂ = A+y is called the
pseudoinverse of A. The pseudoinverse A+ is a linear operator.

In the special case when A is square and full-rank, it must be the case that
A+ = A−1 showing that the pseudoinverse is a generalized inverse.
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The Pseudoinverse Solution

The pseudoinverse solution, x̂ , is the unique least-squares solution to the
linear inverse problem having minimum norm among all least-squares
solutions to the least squares problem of minimizing ‖e‖2 = ‖y − Ax‖2,

x̂ = arg min
x′

{
‖x ′‖

∣∣∣ x ′ ∈ arg min
x
‖y − Ax‖2

}
Thus the pseudoinverse solution is a least-squares solution.

Because Ax ∈ R(A), ∀x , any particular least-squares solution, x ′, to the
inverse problem y = Ax yields a value ŷ = Ax ′ which is the unique
least-squares approximation of y in the subspace R(A) ⊂ Y,

ŷ = PR(A)y = Ax ′

As discussed above, the orthogonality condition determines the least-squares
approximation ŷ = Ax ′ from the

Geometric Condition for a Least-Squares Solution: e = y − Ax ′ ∈ R(A)⊥

The pseudoinverse solution has the smallest norm, ‖x ′‖, among all vectors x ′

that satisfy the orthogonality condition.

Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 17 / 27



The Pseudoinverse Solution – Cont.

Because X = N (A)⊥ ⊕N (A) we can write any particular least-squares
solution, x ′ ∈ arg minx ‖y − Ax‖2 as

x ′ =
(
PN (A)⊥ + PN (A)

)
x ′ = PN (A)⊥x

′ + PN (A) x
′ = x̂ + x ′null ,

Note that
ŷ = Ax ′ = A (x̂ + x ′null) = Ax̂ + Ax ′null = Ax̂ .

x̂ ∈ N (A)⊥ is unique. I.e., independent of the particular choice of x ′.

The least squares solution x̂ is the unique minimum norm least-squares
solution.

This is true because the Pythagorean theorem yields

‖x ′‖2 = ‖x̂‖2 + ‖x ′null‖2 ≥ ‖x̂‖2 ,

showing that x̂ is indeed the minimum norm least-squares solution.

Thus the geometric condition that a least-squares solution x ′ is also a
minimum norm solution is that x ′ ⊥ N (A):

Geometric Condition for a Minimum Norm LS Solution: x ′ ∈ N (A)⊥
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Geometric Conditions for a Pseudoinverse Solution

1. Geometric Condition for a Least-Squares Solution: e = y − Ax ′ ∈ R(A)⊥

2. Geometric Condition for a Minimum Norm LS Solution: x ′ ∈ N (A)⊥

The primary condition (1) ensures that x ′ is a least-squares solution to the
inverse problem y = Ax .

The secondary condition (2) then ensures that x ′ is the unique minimum
norm least squares solution, x ′ = x̂ = A+y .

We want to move from the insightful geometric conditions to equivalent
algebraic conditions that will allow us to solve for the pseudoinverse solution
x̂ .

To do this we introduce the concept of the Adjoint Operator, A∗, of a linear
operator A.
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The Adjoint Operator - Motivation

Given a linear operator A : X → Y mapping between two Hilbert spaces X and Y,
suppose that we can find a companion linear operator M that maps in the reverse
direction M : Y → X such that

(??) N (M) = R(A)⊥ and R(M) = N (A)⊥

Then the two geometric conditions for a least-squares solution become

M(y − Ax) = 0 ⇒ MAx = M y

and
x = Mλ ⇒ x −Mλ = 0 for some λ ∈ Y

which we can write as (
MA 0
I −M

)(
x
λ

)
=

(
My
0

)
,

which can be jointly solved for the pseudoinverse solution x = x̂ and a “nuisance
parameter” λ.

The companion linear operator M having the properties (??) shown above:
(1) exists; (2) is unique; and (3) allows for the determination of x̂ and λ.
It is known as the Adjoint Operator, A∗, of A.

Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 20 / 27



Existence of the Adjoint Operator

Given A : X → Y define A∗ , M by

〈My , x〉 = 〈y ,Ax〉 ∀x ∈ X ∀y ∈ Y

Uniqueness: Suppose M and M ′ both satisfy the above condition. Then

〈My , x〉 = 〈M ′y , x〉 = ∀x , ∀y
〈My −M ′y , x〉 = 0 ∀x , ∀y
〈(M −M ′)y , x〉 = 0 ∀x , ∀y

〈(M −M ′)y , (M −M ′)y〉 = 0 ∀y
‖(M −M ′)y‖2 = 0 ∀y

(M −M ′)y = 0 ∀y
M −M ′ = 0

M = M ′

Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 21 / 27



Existence of the Adjoint Operator – Cont.

Linearity: For any α1, α2, y1, y2, and for all x , we have

〈M (α1y1 + α2y2) , x〉 = 〈α1y1 + α2y2,Ax〉
= ᾱ1 〈y1,Ax〉+ ᾱ2 〈y2,Ax〉
= ᾱ1 〈My1, x〉+ ᾱ2 〈My2, x〉
= 〈α1My1 + α2My2, x〉

⇒ 〈M (α1y1 + α2y2) − (α1My1 + α2My2) , x〉 = 0

Existence: Typically shown by construction for a given problem.

For example, assuming the standard column-vector representation for
finite-dimensional vectors, take X = Cn with inner product 〈x1, x2〉 = xH1 Ωx2,
for hermitian, positive-definite Ω, and Y = Cm with inner product
〈y1, y2〉 = yH

1 Wy2, for hermitian, positive-definite W . Then

〈My , x〉 = yHMHΩx and 〈y ,Ax〉 = yHWAx = yH (WAΩ−1)︸ ︷︷ ︸
MH

Ωx

M = (WAΩ−1)H ⇐⇒ M = Ω−1AHW
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Existence of the Adjoint Operator – Cont.

Proof that N (M) = R(A)⊥.

Recall that two sets are equal iff they contain the same elements.

We have

y ∈ R(A)⊥ ⇐⇒ 〈y ,Ax〉 = 0 , ∀x
⇐⇒ 〈My , x〉 = 0 , ∀x
⇐⇒ My = 0 (prove this last step)

⇐⇒ y ∈ N (M)

showing that R(A)⊥ = N (M).
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Existence of the Adjoint Operator – Cont.

Proof that R(M) = N (A)⊥.

Note that R(M) = N (A)⊥ iff R(M)⊥ = N (A)

We have

x ∈ R(M)⊥ ⇐⇒ 〈My , x〉 = 0 , ∀y
⇐⇒ 〈y ,Ax〉 = 0 , ∀y
⇐⇒ Ax = 0 (prove this last step)

⇐⇒ x ∈ N (A)

showing that R(M)⊥ = N (A).
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Algebraic Conditions for the Pseudoinverse Solution

We have transformed the geometric conditions (1) and (2) for obtaining the minimum
norm least squares solution to the linear inverse problem y = Ax into the corresponding
algebraic conditions

1. Algebraic Condition for an LS Solution – The Normal Equation: A∗Ax = A∗y

2. Algebraic Condition for a Minimum Norm LS Solution: x = A∗λ

where A∗ : Y → X , the adjoint of A : X → Y, is given by

Definition of the Adjoint Operator, A∗: 〈A∗y , x〉 = 〈y ,Ax〉 ∀x, ∀y

When the (finite dimensional) domain has a metric matrix Ω and the (finite
dimensional) codomain has metric matrix W , then (assuming the standard column
vector coordinate representation) adjoint operator is given by

A∗ = Ω−1AHW

which is a type of “generalized transpose” of A.
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Solving for the Pseudoinverse Solution

Note that the normal equation is always consistent by construction

A∗e = A∗(y − ŷ) = A∗(y − Ax) = 0 (consistent) ⇒ A∗Ax = A∗y

Similarly, one can always enforce the minimum norm condition

x = A∗λ

by an appropriate projection of n onto R(A∗) = N (A)⊥. In principle, the combination of
these two equations (

A∗A 0
I −A∗

)(
x
λ

)
=

(
A∗y

0

)
can always be solved for x̂ and λ. In practice, this is typically only done for the case
when A is full rank.

Recall that the process of solving for x̂ given a measurement y is described as an action,
or operation, on y by the so-called pseudoinverse operator A+, x̂ = A+y . Because A∗ is
a linear operator (as was shown above) and the product of any two linear operators is
also a linear operator (as can be easily proved), the above system of equations is linear.
Thus the solution of x̂ depends linearly on y and therefore:

The pseudoinverse A+ is a linear operator.

Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 26 / 27



Solving for the Pseudoinverse Solution - Cont.

In general, solving for the pseudoinverse operator A+ or solution x̂ requires
nontrivial numerical machinery (such as the utilization of the Singular Value
Decomposition (SVD)).

However, there are two special cases for which the pseudoinverse equations given
above have a straightforward solution.

These correspond to the two possible ways that A can have full rank:

When A is onto. (Corresponding to a matrix A having full row rank.)

When A is one-to-one. (Corresponding to a matrix A with full column rank.)
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